
LOWER BOUND ON LATENCY FOR VLIW ASIP DATAPATHS
�

Margarida F. Jacome and Gustavo de Veciana
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712
Tel:

���������
	�������������
Fax:

����������	��������������
jacome,gustavo� @ece.utexas.edu

������������ ��
Traditional lower bound estimates on latency for dataflow graphs
assume no data transfer delays. While such approaches can gen-
erate tight lower bounds for datapaths with a centralized register
file, the results may be uninformative for datapaths with distributed
register file structures that are characteristic of VLIW ASIPs. In
this paper we propose a latency bound that accounts for such data
transfer delays. The novelty of our approach lies in constructing
the “window dependency graph” and bounds associated with the
problem which capture delay penalties due to operation serializa-
tion and/or data moves among distributed register files. Through a
set of benchmark examples, we show that the bound is competitive
with state-of-the-art approaches. Moreover, our experiments show
that the approach can aid an iterative improvement algorithm in de-
termining good functional unit assignments – a key step in code
generation for VLIW ASIPs.

!#"%$ ���'&)(+*, ���- & $
Lower bound estimates on latency for Data Flow Graphs (DFGs)
executing on datapaths have been extensively investigated, see e.g.,
[11, 6, 10]. High-level synthesis tools have traditionally used these
lower bound estimates to identify and prune inferior designs during
design space exploration. While some of the bounding approaches
give tight bounds when applied to datapaths with acentralized reg-
ister file, they may be uninformative when applied to datapaths
with distributedregister file structures, see e.g., Fig.1. Since the
datapaths of Very Large Instruction Word (VLIW) Application-
Specific Instruction-Set Processors (ASIPs) typically exhibit such
distributed storage structures [8, 7], there is a need to develop bounds
that can be informative in this context. These bounds can in turn
provide guidance during code generation for this important class
of embedded processors – in particular, as discussed in the sequel,
during the functional unit binding (assignment) phase of code gen-
eration.

In this paper, we propose an approach to lower bounding the
execution latency of a DFG, for agiven binding of the DFG to
a datapath, which considers the impact of distributed register file
structures on latency. In particular, we will focus on DFGs corre-
sponding tosingle basic blockswithin a loop body, since these are
typically the time critical segments for the embedded applications
and are likely to benefit the most from using VLIW ASIPs [8, 7].

In our DFG examples, we will use the convention of naming
activities that require multiplication operations bym, ALU opera-
tions bya and a bus use byb, see e.g., Figs.1 and 2. The key issue
underlying our work is as follows: when two activitiessharea data
object, asm1 anda1 sharer1 . i / in Fig.1, it is of interest to bind them
to functional resources thatsharecommon register files – e.g., mul-0

This work is supported by a National Science Foundation NSF CAREER Award
MIP-9624321 and by Grant ATP-003658-088 of the Texas Higher Education Coordi-
nating Board.

tiplier M1 and ALU A1 share register file RF1. By doing so, one
can in principle avoid delays incurred in moving the result ofm1 to
a new register file beforea1 can execute. The primary contribution
of this paper is the development of a latency bound which directly
accounts for such data transfer delays. Since for datapaths with dis-
tributed register files the delays associated with such transfers can
be significant, the availability of tight lower bounds is critical in the
context of VLIW ASIPs.

*

r1[i] r2[i]

m1 m2

a1

*

+

ALU
A1
1 I/O

MULT

M1

I/O
MULT

I/O

M2
ALU

I/O
MULT

I/O
MULT

I/O

M3 M4 A2
1

memory

RF1 RF2 RF3 RF4 RF5

bus capacity=2

Figure 1: Segment of DFG and VLIW ASIP datapath.

In order to avoid delays due to data transfers, one might seek a
binding of DFG activities to datapath functional resources, in which
shared(result/operand) data objects reside in the same register files.
However, in doing so, one may bind two activities, that could have
been executed concurrently, to the same resource resulting in ase-
rialization of the operations. For example, to avoid data moves
between register files, one may bind bothm1 andm2 to M1, so that
their results are placed in RF1 from whicha1 draws its inputs. By
doing so, a serialization penalty will be incurred sincem1 andm2
can no longer be executed concurrently. Thus, one can view the
binding task as a tradeoff between 1) delays incurred from having
to move data objects across distributed register files, and 2) delays
incurred from needlessly serializing operations. Fig.2 exhibits two
bindings for our example – on the left a binding attempting to avoid
moves and, on the right, a binding avoiding serialization. Note that,
in this simple example, both bindings lead to the same latency, but
in general this will not be the case.

m1 m2

a1

1

2

serialization required

m1 m2

a1

b1

1

2

3

data transfer penalty

binding binding

(m1) = (m2) = M1 ; (a1) = A1β
2

β β β β
β

 (m1) = M2; (m2) = M1;
 (a1) = A1

Figure 2: Serialization versus data transfers.

A second contribution of this paper is to develop a model, the
window dependency graph, capable of capturing chains of increased
execution delays caused by such operation serializations. This model
proves to be useful in assisting incremental changes to bindings
which tradeoff the delays resulting from data moves and opera-

0-7803-5832-X /99/$10.00 ©1999 IEEE.

0-7803-5832-5/99/ $10.00 © 1999 IEEE 261

tion serialization.Wearguethattheproposedwindow dependency
graph3 canbeof useduringcodegenerationfor VLIW ASIPs.

Thepaperis structuredasfollows. Section2 formally defines
theproblemtobeaddressed.Section3presentstheproposedlower-
boundon executionlatency. Section4 discusseshow theinforma-
tion providedby theproposedlowerboundingmethodmaybeused
in exploring tradeoffs duringcodegeneration.Section5 discusses
relatedwork andpresentsbenchmarkexamples.Conclusionsare
givenin 4 6.

5 6 ������78&�9;:+���=<,>��@?A(=�����=<�����>��B� $ (C�,- $ (,- $:=�
A DFG will be modeledby a DAG, G D A E E F , wherethe nodesA
representactivities, i.e., operationsto be carriedout on datapath
resources,e.g.,addsandmoves,andthe edgesE G A H A repre-
sentdataobjectsthatare“produced”and“consumed”by activities
during the flow of execution. Without lossof generality, we as-
sumethat an activity canconsumeat most two dataobjects,i.e.,
the in-degreeof any nodeis at most 2. We focus on codeseg-
mentscorrespondingto a singlebasicblock within a loop body,
thustheDFG shown in Fig.1 includesdataobjectlabelswith iter-
ationindices,e.g.,r1 . i /�E r2 . i /�I As discussedbelow, theDFG model
will alsoincludemove (i.e.,datatransfer)activities, requiredfor a
givenbindingof functionalactivities to datapathresources.

Let R denotethesetof datapathresources.Thesemayinclude
ALUs, multipliersandotherfunctionalunits,aswell asbuses.For
eachresourcer J R, we let c D r FKJ
LNM denotethecapacityof that
resource,e.g.,anALU would have a capacityof 1, signifying that
it canperform1 operationperstep,whereasa busresourcemight
have a capacity2, signifying that it canperform2 concurrentdata
transfers.1 For simplicity we will assumethatall activities take a
unit stepto execute,but theapproachcanbeextendedto multicy-
cle and/orpipelinedfunctionalunits. The datapathis alsospeci-
fied in termsof its (distributed)registerfiles, their connectivity to
functionalresourcesand,for simplicity, a sharedbuswith a given
capacity, seee.g.,Fig.1.

Weassumethatfunctionalactivitiesof theDFGhavebeenbound
to datapathresources,that is, eachactivity a J A is boundto a
resourceβ D aFOJ R which is capableof carryingout that activity.
Given sucha binding and the registerfile connectivity, we iden-
tify dataobjectmovesthat will needto take placebetweenoper-
ations,andexplicitly includenodesin the DFG correspondingto
suchmoves.Move operationsareboundto thedatapath’s bus.For
example,if β D m1FNP M1 andβ D m2FNP M2 thenanadditionalnode
wouldbeinsertedbetweenm2 anda2 to capturethedelayto move
theresultof m2 in registerfile RF2to registerfile RF1,seeFigs.1
and2.

Q R &S9UTS�V�+&+* $ (W& $CX �Y��T $ @Z
Recallthatour first goal is to determinea lower boundon theex-
ecutionlatency for a givenbinding of a DFG to a datapath.The
secondgoal is to generateinformationthat canassisttradeoff ex-
plorationduringfunctionalunit assignment(binding). We will do
this by first determininga global lower bound, L, on the latency
andthen,generatinga windowdependencygraph, thatwill permit
assessingtheadditionaldelaysonactivities thatareincurreddueto
resourceand/orprecedenceconstraints.

1In general,onemight considerbinding activities to clusters of functionalunits
sharingacommonregisterfile. In thiscase,onewoulddefinethecapacityof acluster
to performaparticulartypeof operation,whichwoulddependonthenumberof func-
tionalunitscapableof executingtheoperationin thecluster. This is in factthemanner
in whichthebindingis specifiedbut, to simplify notation,in thispaperwewill specify
bindingsdirectly to resources.

Q)[\!^]VX &+�=� XAX &S9OT��V�+&+* $ (
L

Variousmethodsareavailableto determinegloballowerboundson
latency of the schedule,e.g., [11]. For concreteness,we will use
the maximumof two simplebounds,however moresophisticated
approachescanbeused.We first performan,assoonaspossible,
ASAP schedulingof the DFG to determinethe minimumnumber
of stepsthat would be required. Next we sum the total number
of movesthatwereexplicitly introducedbetweenactivities in the
DFG with the total numberof primary inputs/outputsthat arere-
quired,anddivideby thebuscapacityto find theminimumnumber
of stepsthatwould berequiredto performtherequireddatatrans-
fers. Theglobal lower boundL is givenby themaximumof these
two numbers.

Q)[_5a` - $ (,&�9b�
Weshallconstructthreetypesof windowsassociatedwith theprob-
lem at hand,individual, basic, andaggregatedwindows. A win-
dow, indexedby i, is specifiedby a four-tuple

w D i FNPcD sD i F�E f D i F�E r D i F�E Ai F
wheresD i F and f D i F arethe startandfinish stepsfor the window,
r D i F is a datapathresourceassociatedwith the window, andAi is
a setof activities boundto r D i F which ideally would be executed
within theschedulingrange . sD i F�E f D i F'/�I

To establishapproximateschedulingrangesin which activi-
ties might be scheduledwe usean ASAP schedulingof the DFG
and, given the global lower boundL, performan as late as pos-
sible (ALAP) schedulingof the DFG. Let the activities A be in-
dexed k P 1 E 2 EdIdI�I�eA e , where eA e denotesthe cardinalityof setA.
For eachactivity ak J A, we definean individual windowwI D kFfPD sI D k F�E f I D k F�E β D ak F�Ehg ak i F wheresI D kF�E f I D k F denotetheearliestand
latestpossiblestepsat which theactivity couldbeexecuted,based
on the ASAP andALAP schedules,andβ D ak F is the resourceto
whichak is bound.Notethatsincetheschedulingrangesassociated
with thesewindowswerederivedbasedonASAP/ALAPschedules
thatdisregardresourceconstraints,aschedulein with eachactivity
lies within its individualschedulingrangemaynotbefeasible.

Individual windows provide an activity-centric point of view
on schedulingconstraints.However, theremaybe multiple activ-
ities boundto the sameresourcewhich sharethe sameschedul-
ing range.Giventhesetof individual windows, we shallconstruct
a reducedsetof j P 1 EdI�IdI nB basicwindowsdenotedby wB D j FjPD sB D j F�E f B D j F�E rB D j F�E AB

j F whereAB
j is the largest set of activities

boundto rB D j F with thesameindividual schedulingrange. sB D j F�E f B D j F�/ . A basicwindow thus groupsactivities sharinga
commonresourceandthesameschedulingrange.

Giventhecollectionof basicwindows,we thengenerateacol-
lection of i P 1 EdIdIdI nA aggregated windows, denotedby w D i FOPD sD i F�E f D i F�E r D i F�E Ai F�I 2 The set of aggregatedwindows includesall
thebasicwindows aswell asmergingsof oneor morebasicwin-
dows, associatedwith activities bound to the samedatapathre-
source.Only windows with schedulingrangesthatabut or overlap
with eachothercanbemergedandonly thosewith amaximalnum-
berof activities for thegivenschedulingrangearekept.Thuseach
aggregatewindow correspondsto a maximalnumberof activities
associatedwith agivenschedulingrangeto beexecutedon acom-
monresource.Aggregatedwindows,providearesource/scheduling
rangecentricview ontheproblem,by collectively capturingtheag-
gregateresourcedemandson variousrangesof steps.

Fig.3 exhibits a DFG includingonly additionsandmultiplica-
tions, andthe varioustypesof windows that would be generated.

2Note that to keepthe notationsimplewe suppressthe superscriptA that would
indicatethattheseareaggregatewindowsversusindividual I or basicB windows.

262

1

2

3

+

*

*

*

+

*

*

+

*

*

*

+

*

*

+

*

*

**

*

+

DFG individual
 windows

basic
 windows

aggregated
 windows

windows sharing
same range
 are joined

contiguous or overlapping
 ranges generate new
 aggregated windows

+

*
+

+

*

**

* *

**

* *

**

*

**

**

only windows
with a maximal
number of
activities are
kept

L=4

sc
h

e
d

u
lin

g
 s

te
p

s

Figure 3: Exampleof individual, basicand aggregatedwindow
construction.

Forsimplicitywehavenotlabeledwindowsandactivities.Notefor
example,thatoneof theadditionactivities canbescheduledat the
earlieston thefirst stepor at thelateston thesecondstep,thushas
an individual window with a schedulingrangeof two steps.Also
notethatthemultiplicationactivitieson thelasttwo stepshave the
sameindividual ranges,andhencearecollapsedinto singlebasic
windowsassociatedwith two activities. Thisbettercapturesthere-
sourcedemandson theselasttwo steps.Finally, windows thatabut
or overlap with eachother generatenew merged aggregatewin-
dows. Thusthe basicwindow associatedwith the activity having
a rangeof two stepsis mergedwith the smallerfully overlapping
individual window of thesametype. Also variouslargerwindows
containingonly multiplication activities are generated,capturing
the high resourcerequirementsover larger rangesof scheduling
steps. A complexity analysisfor the window generationprocess
canbefoundin 4 3.7.

Q)[Q R &k @� X (=T X �@ZY�mlonfT���&+*+�� @Tp @& $ �����'��- $ TS(W�� �>�TS(+* X - $:
Eachaggregatedwindow i correspondsto a setof activities Ai to
be executedon resourcer D i F within a rangeof schedulingsteps. sD i F�E f D i F�/'I In the bestcase,if thereareno constraintson the ac-
tivities in a window, they canbeexecutedin only 1 step,e.g.,step
sD i F�I However, usually, dueto resource/precedenceconstraints,the
activities associatedwith thewindow requireseveralstepsto exe-
cute,andin somecasesmight even exceedtheupperlimit f D i F on
their schedulingrange. To capturethis effect we shall computea
lower boundon theadditionalnumberof steps,i.e., beyond the1
stepcaseconsideredabove, thatany feasibleresourceconstrained
schedulewill requireto executetheactivities in Ai . Welaterdefine
this boundasthe local delay, λ D i F , of the window. The boundis
obtainedby consideringtheactivitiesAi in isolation i.e.,only con-
sideringdirectprecedenceconstraintsamongthemandthecapacity
of theresourceto which they arebound.

Wedevelopourboundfor anarbitrarysetof activities,Aq�G A in
thegraphG D A E E F whichareto beexecutedonthesameresourcer -
windowsarethusaspecialcase.Let G D Aq E E q F denotethesubgraph
of G D A E E F which includesthe activities Aq andall edgesE q8G E
betweenactivities in Aq . This inducedgraphcapturesonly direct
precedenceconstraintsamongactivities in Aq , optimisticallydrop-
pingall others.Next performanASAPschedulingfor theactivities
in thesubgraph.Let l P 1 EdIdIdI m denotethestepsof this schedule,
nl denotethe numberof activities scheduledon stepl , andm be
the last non-emptystep. Basedon the above ASAP schedule,at
best,the activities in Aq canbe completedin m steps. However,
sincetheseactivitiesareto beexecutedonresourcer with capacity
c D r F , no morethanc D r F activities maybe scheduledper step,i.e.,
nl r c D r F�I Theboundis basedon thefollowing observation: a fea-
sible resourceconstrainedschedulemay not executeany activity
prior to its executionstepin theASAP schedulefor the subgraph
andmayscheduleatmostc D r F activitiesperstep.Alternatively, we

make the optimisticassumptionthat oncean activity on stepl of
the subgraph’s ASAP schedulecompletesexecution,any activity
on step l s 1 can be scheduledfor execution. By relaxing con-
straintsamongtheactivities in Aq anddroppingconstraintsamong
Aq andtherestof theDAG wecanobtainthefollowing localbound
on the relative numberof stepsneededto executethe activities in
Aq .
Lemma 3.1 SupposeAq+G A is a nonemptysetof activitiesbound
to a resource r with capacityc D r F and let nl denotethe number
of activitiesin thestepsl P 1 EdIdIdI�E m of theASAPschedulefor the
subgraphG D AqtE E q%F definedabove. DefineboundD AqtE r F by

x0 P 0 E
xl M 1 P maxg nl s xl u c D r F�E 0i E l P 1 E�IdIdI mE

boundD Aq E r FvP w xmM 1

c D r Fyx s m u 1 I
ThenboundD Aq E r F is a lowerboundonthenumberof steps,beyond
thefirstone, thatanyfeasibleresourceconstrainedschedulewould
require to completeexecutionof theactivitiesin Aq I

Theproof of this lemmais straightforwardandincludedin the
appendix. The iterationwhich definesthe boundcorrespondsto
greedilypackingactivities,consistentwith notbeginningexecution
prior to theirassociatedsubgraphASAPstep,andnotexceedingthe
resource’s capacity.

With this resultin handwe definethe local delayfor window i
by λ D i FfP boundD Ai E r D i F�F . Thusthe lastactivity in window i must
beexecutedonor afterstepsD i FSs λ D i F�I Thismustbethecasesince
no activity in Ai canbegin executionprior to sD i F andaccordingto
Lemma3.1 at leastλ D i F additionalstepsarerequired. If this ex-
ceedsf D i F thenthe precedence/resourceconstraintswill forceac-
tivities to beexecutedoutsidethewindow’s schedulingrange,i.e.,
incur excessdelays,providing valuablelocalizedinformationon
whereaparticularbindingmaybeleadingto schedulingdelays.

Q)[z { ��&+<��S:=����TS(|(=T X �YZ@�}lo~�T�Z R TS�����
Local delayscapturedelaysincurreddue to precedence/resource
constraintswithin agivenwindow. Dueto dependenciesamongac-
tivities in differentwindows, additionaldelaysmaybepropagated
from onewindow to another. Without lossof generalityconsider
two aggregatewindows, indexed by 1 and2. We shall definede-
pendenciesamongwindowsasfollows.

Definition 3.1 We say that Window 2 dependson Window 1 if
amongWindow 2’s activities, A2, there are activitieswith direct
data dependenciesfrom activitiesA1 in Window 1. More specif-
ically let P1 � 2 H C1 � 2 : P�D A1 H A2 Fk� E be the setof edgeson the
DFG from activities in Window 1 to activitiesin Window 2, thus
Window2 dependson Window1 if P1 � 2 H C1 � 2 �P /0 I
We call P1 � 2 andC1 � 2 the setof producerandconsumeractivities
associatedwith this dependency relation. Note that dependency
is a directedrelationship,i.e., in the above definition, Window 2
dependson Window 1. In thesequelwewill usethefollowing no-
tationPa : P�g b J A1 e D b E aFfJ E i to denoteproducersin Window 1
for anactivity a andCb : P�g a J A2 e D b E aF8J E i to denoteconsumers
in Window 2 for activity bI Also wedefineL2 asthesetof activities
on first stepof ASAP schedulefor subgraphG D A2 E E q�F inducedby
theactivities in Window 2.

We let δ D i F denotea lower boundon theadditionaldelayprop-
agatedto an aggregatewindow w D i F from otherwindows. Thus,
for a given δ D i F , we canguaranteethat any feasibleschedulefor
the DFG will have an activity in Ai scheduledon or after step
sD i FSs λ D i FSs δ D i F , i.e.,afterthefirst schedulingstepfor thewindow

263

plus its local andpropagateddelays.Our goal is to systematically
find such� incrementalbounds,showing wherecombinationsof re-
sourceandprecedenceconstraintsarelikely to leadto propagation
of delaysacrosswindows, which in turn will increasethe latency
of theschedule.Thealgorithmproposedbelow is basedon recog-
nizing two waysin which the activities in Window 1 canfurther
delaythelastactivity in Window 2. Thefirst is thatthereis a non-
emptysetof activitiesin Window 2 thatcanonly bescheduledafter
completionof thelastactivity in P1 � 2 I Thesecondis thatdepending
on theminimumnumberof producersrequiredby theactivities in
L2 of Window 2, the start time for executionof the activities A2
mayneedto bedelayed.For a detaileddiscussionof theproposed
algorithmseetheproof of Lemma3.2 in theappendix.Below we
presenta concreteexampleanddiscussionthat shouldclarify the
generalidea.

propagated-delayD 1 E 2F
initialize P1 � 2 E Pa E Cb andL2
if (P1 � 2 P A1) /* computeboundon lastproducerstep*/

last-producer-step P sD 1F�s λ D 1FSs δ D 1F ;
elsestart-stepP minak g sI D kF�eak J P1 � 2 i ;

last-producer-step P start-steps boundD P1 � 2 E r D 1FdF ;
/* computeboundon lastconsumerstep*/

if (c D r D 1FdF8P 1 and � a J L2 E�ePa e�P 2)
last-consumer-step P maxg sD 1FSs 2 E sD 2F i s λ D 2F ;

elselast-consumer-step P sD 2FSs λ D 2F�s δ D 2F ;
/* take theworst of thetwo*/

num-consumers-for-last-producerP minb g=eCb eSe b J P1 � 2 i ;
delay P�w num-consumers-for-last-producer� c D r D 2FdF x ;last-consumer-step P

maxg last-producer-steps delayE last-consumer-stepi ;
/* computepairwisepropagateddelayfor Window2 from1 */

∆ D 1 E 2FNP last-consumer-stepu . sD 2FSs λ D 2F'/ ;
/* updateworst casepropagateddelayfor Window2 */

δ D 2FNP maxg δ D 2F�E ∆ D 1 E 2F i ;
Lemma 3.2 Giventwoaggregatewindows,Windows1 and2, with
associatedlocalandcurrentworstcasepropagateddelaysλ D 1F�E δ D 1F
and λ D 2F�E δ D 2F respectively, such that Window 2 dependson Win-
dow 1, then the algorithm propagated-delayabove computesa
(possiblytighter) updatedworst casepropagateddelay δ D 2F for
Window2, anda pairwisepropagateddelay∆ D 1 E 2F , i.e., theprop-
agateddelayresultingfromWindow1.

Fig.4 shows two windows, 1 and2, suchthat Window 2 de-
pendson Window 1. For this example,the dependency between
two windows canbeshown to furtherdelaytheexecutionof activ-
ities in Window 2 andthusincreasesthelowerbound,δ D 2F , on the
numberof additionalstepsrequiredto executetheactivities A2 in
Window 2. Basedon their localandcurrentworstcasepropagated
delays,our algorithmcomputesa new propagateddelayδ D 2F for
Window 2.3 The examplein the Fig.4 capturesoneof the cases
consideredin our algorithm. In particular, that in which all of the
activitiesin A2 thatcouldhavebeenscheduledonstepsD 2F (i.e.,ac-
tivity a4), accordingto theASAPschedule,dependontwo produc-
ersin Window 1. Sincethecapacityc D 1F of theresourceassociated
with Window 1 is only 1, thisdelaysthebeginningof executionfor
activities in Window 2, causingits last consumerto be scheduled
onStep4. Now, sincethisexceedssD 1F@s λ D 1FkP 3, thedependency
of Window 2 onWindow 1 causestheworstcasepropagateddelay
for Window 2 to become1.

We notethat it is possibleto obtainmoreaggressive estimates
for propagateddelays,however we have foundtheabove to bead-
equatesofar.

3As discussedin thesequel,we will initially setall worst casepropagateddelays
to 0.

producers

consumers

Dependency between
 two aggregated windows.

 A schedule accounting
 for precedence constraints
 of activities in the windows.
 .

1

2

3

Window 1

Window 2

L=4

1

2

3

Window 1 Window 2

L=4

sch
e

d
u

lin
g

 ste
p

s
sch

e
d

u
lin

g
 ste

p
s

1

2

3

4

5

δ
�λ� δ

�λ�

δ(2)=1
�

P = {a , a }1,2 1 2 L = { a }41

a4

s(2) =2
f(2) =3
c(2) =1

 (2)=1
 (2)=0

s(1) =1
f(1) =3
c(1) =1

 (1)=2
 (1)=0

last−consumer−step = max [1+2, 2] + 2−1=4
propagated delay = max [0, 4 − [2+1]] =1

P

C1,2

1,2

2P ={ a , a }1

∆
�

(1,2)=1

new worst case
propagated delay

Figure4: Window dependenciesandpropagateddelays.

Q)[_�#� & $ ������*= ���- & $ &��y��>�T ` - $ (,&�9 6 TS<+T $ (=T $ @Z] �'�=<+>
LetW P�g 1 EdIdI�I nA i beanindex setfor theaggregatedwindows as-
sociatedwith theproblem.Wedefineawindowdependencygraph
(WDG),G DWE D F , with nA nodesrepresentingaggregatedwindows,
andincludingdirectedarc’sD G W H W betweennodes(aggregate
windows) thatdependononeanother. Thatis, D i E j F�J D if window
j dependson window i. However, to avoid cycles,not all depen-
dencies,i.e., arcs,areincludedin thegraph.Thefollowing rule is
usedto pruneedges.

Pruning Rule: Prune D i E j FjJ D if no produceractivity canbeex-
ecutedon thefirst stepsD i F and/orlaststepof window i or if
noconsumeractivity canbeexecutedon thefirst stepsD j F of
window j . Thatis,eithersD i F)� minak g sI D kF�eak J Pi � j i and/or
f D i Fk� maxak g f I D kF�e ak J Pi � j i and/orsD j Fk� minak g sI D kF�eak J
Ci � j i E wheresI D kF is the schedulingstepfor activity ak J A
in theASAPschedule.

Theintuition underlyingthis rule is thatthedependency (arc D i E j F)
shouldonly beretainedif, amongall aggregatewindows contain-
ing thesamesetof produceractivitiesPi � j , window i hasthelargest
lower limit on its schedulingrange,i.e., sD i F . Indeed,dependen-
ciesfrom aggregatewindows startingearliercanbe easilyshown
to resultin thesameor smallerworstcasepropagateddelays,thus
removing suchdependencieswill notcompromiseour lowerbound
on latency. Note,however, thatour rulemayactuallyremovemore
dependenciesthan thoseassociatedwith aggregate windows in-
cludingactivities Pi � j but startingthelatest.Indeed,in somecases
anaggregatewindow includingaspecificsetof produceractivities
Pi � j maynot includeaproduceractivity thatcanbeexecutedonthe
first stepof thewindow. A similar intuition accompaniesthecase
in lookingatconsumersin thedependentwindow j . While in some
casesthispruningmayweakentheresultingbounds,it allowsusto
easilyestablishthat theprunedWDG is acyclic, seetheappendix
for aproof. This in turnsignificantlyreducesthecomplexity of our
proposedalgorithm.

Theorem3.1 A window dependencygraph G DWE D F prunedac-
cording to theaboverule is acyclic.

264

Q)[� � X :=&=�h- ��>+����&C �&+��<+*S��T
<���&+<��S:=����TS(|(=T X �@Z@�
Givenanacyclic window dependency graphG DWE D F , wenext dis-
cusshow to computetheworstcasepropagateddelayfor all win-
dowsin thegraph.Wefirst setδ D j FkP 0 for all j J WI Then,starting
from thesourcenodes(aggregatedwindows) in thewindow depen-
dency graph,we iteratively determinethe worst casepropagated
delayof eachnode j , δ D j F , not yet considered,but whoseparent
nodes’worstcasepropagateddelaysareknown, via

� i s.t. D i E j F�J D : propagated-delayD i E j F�I
Thepropagateddelayfor eachsourcenodeis assumedto be0 upon
initialization.

Theorem3.2 Thisiterativealgorithmreturnsa setof propagation
delaysg δ D i F�e i J W i for windowsin thegraph.

Theproofof this theoremfollowsdirectly from Lemma3.2.
Thefinal lowerbound,L � , ontheexecutionlatency of theDFG,

is given by the worst caselower boundover all windows in the
WDG, i.e.,

L � P max
i
g sD i FSs λ D i FSs δ D i F�e i J W i I

Thecomplexity analysisof thealgorithmfor computingpropagated
delaysandL � canbefoundin thenext section.

Q)[� � &+��< X T��Y- �dZ�� $ � X ZY��- �
In whatfollows we briefly discusstheasymptotictime complexity
of thealgorithmsfor creatingtheWDG andcomputingL � for the
WDG. The setof individual windows is createdusingASAP and
ALAP schedulingalgorithms,andthustakesO D�eA e�s�eE e F . Since
themaximumnumberof edgesincidentoneachactivity (i.e.,num-
ber of operands)is two, eE e r 2 � eA e , andthusthe generationof
individualwindows takesO D�eA e F�I

Next we discussthe generationof aggregatewindows.4 Note
that the maximumnumberof aggregatewindows per resourceis
given by ∑L � 1

i � 0 D L u i F�D i s 1Ff L3. Indeedfor eachresource,one
canhave at mostL windows of size1, L u 1 windows of size2,
down to 1 window of sizeL. Thesimplealgorithmcurrentlyused
to createtheaggregatewindows is asfollows. For eachresource,
we createa list of L3 emptycandidateaggregatedwindows, with
correspondingranges,orderedby start time. Eachcandidateag-
gregatewindow hasa setof steps,from startsteps to finish step
f . Eachsuchstepis initialized asunused,anda window’s local
counterof unusedstepsis initialized to the numberof stepscon-
tainedin its range. In the first phaseof the algorithm, for each
individual window, we searchfor all candidateaggregatewindows
(definedfor thecorrespondingresource)thatcontainits scheduling
range.Whenever oneis found,the individual window’s activity is
insertedin theaggregatewindow, andall stepsthat the individual
window shareswith thecandidateaggregatewindow thatarecur-
rentlyunusedaremarkedasused.Thecounterof unusedlayersfor
the candidateaggregatewindow is thenupdated.This first phase
takesO D¡eA eL4 F , sinceeachof theO D�eA e F individualwindows needs
to iteratethoughtheO D L3 F candidateaggregatewindowsof its cor-
respondingresource,andupdateunusedlayersat a costof O D L F�I
In thesecondphaseof thealgorithm,eachresultingcandidateag-
gregatewindow is validated,by checkingif its counterof unused

4For mostpracticalcases,we expectthattheintermediatestepof generatingbasic
windowswill payoff, i.e., improve theoverallefficiency of thealgorithm,sinceit may
significantlyreducethe numberof windows that needto be individually considered
in theexpensive merging stepthat follows. However, for thepurposeof determining
asymptoticcomplexity sinceonewould still needto consider¢A ¢ basicwindows, the
basicwindow generationstepwill beomittedin thisanalysis.

layersis zero. If not, the candidateaggregatewindow is invalid,
andis deletedfrom the orderedlist of aggregatewindows for the
resource.If thecandidateaggregatewindow is valid, we perform
the ASAP schedulefor the inducedsubgraphassociatedwith the
activities in the window, andcomputethe local delayλ D i F of the
window - thecomplexity of this stepis O D�eA e F�I Thesecondphase
of the algorithmhasa complexity of O D�eR eL3 eA e F sinceO D¡eR eL3 F
tentative aggregatewindows mustbeconsidered.5 Thefinal num-
berof aggregatewindows is O D�eR eL3 F�I

Next weconsiderthealgorithmfor creatingtheprunedWDG’s
edges,and simultaneouslycomputingthe propagateddelaysbe-
tweenall aggregatewindows. The worst casepropagateddelays
for eachwindow arefirst set to 0. We thensequentiallyconsider
theaggregatewindowsof all resources,orderedby starttime. Sup-
poseaggregatewindow j is selectedfor consideration,we shall
call it the pivot. Next we selecta candidateproducerwindow
for the pivot. (Due to the pruningrule, only aggregatewindows
whosestarttime is lessthanthatof thepivot canbeselected.)Next
oneverifies if the pruningconditionholds(which takesO D�eA e 2 F)
in which casethe edgeis not constructedbetweentheaggregated
windows and the next candidateproducerwindow is considered.
Otherwise,an edge D i E j F is created,and the algorithm for com-
puting the pairwisepropagateddelay∆ D i E j F describedin 4 3.4, is
executed,andthevalueis associatedwith edge D i E j F .6 If thenew
pairwisepropagateddelay is greaterthan the currentworst case
propagateddelayδ D j F of the pivot window, the value is updated.
The algorithmto updateworst casepropagateddelayof the pivot
for a given candidateproducertakesO D�eA e 2 F�I Thusthe computa-
tion of thebound(andsimultaneousgenerationof theedgesin the
WDG), is doneby applyingthepreviousstepto pairsof aggregate
windows, andtakesO D�eR e 2L6 eA e 2 F . In summary, thegenerationof
theWDG andthecomputationof L � have anasymptoticcomplex-
ity of O D¡eR e 2L6 eA e 2 F .

For VLIW datapathswith multiplefunctionalunits(intendedto
exploreparallelismin theDFG), L is typically muchsmallerthaneA e I Moreover, thenumberof aggregatedwindows thatneedsto be
consideredin thevariousstepsof thealgorithmhasin practicebeen
(andis expectedto be)muchsmallerthan eR eL3.7 Thus,weexpect
theabove theoreticalasymptoticcomplexity to bevery pessimistic
for theclassof problemsof interest.For all theDSPbenchmarks
consideredin 4 5, the total executiontime hasnever exceeded0 I 5
secon anUltraSparc1.

z£` - $ (,&S9;(,TS<+T $ (=T $ @Z�:+����<+>�� $ (����'��(=T�&�¤¥T���< X &�������- & $
In thissectionwediscussasimplebindingheuristicwhichtakesad-
vantageof thewindow dependency graph(WDG) to exploretrade-
offs between1) reducingdatatransfersand2) avoiding operation
serialization,see4 1. Theexperimentalresultsin 4 5 exhibit theef-
fectivenessof thisheuristicbasedontheWDG,whichin turncould
beusedby aniterative improvementbindingalgorithm.

As a startingpoint in thegenerationof our examples,we con-
sideredan initial binding that reducedmovesbetweenoperations
on the longestpathsof the DFG. The ideais to bind activities on
thosepathssuchthat their shareddataobjectsremainon register
files sharedby theassignedfunctionalunits. Theremainingbind-
ing of operationsto functionalunits was performedto minimize
serializationof concurrentoperations.Thisprocesswasdoneman-
ually.

5Notethatthissecondstepof thegenerationof aggregatewindowscan(andshould)
beactuallyintegratedin thefinal phaseof thealgorithm,but for clarity of theexplana-
tion, weconsiderit hereindependently.

6Notethat thecomputationof ∆ ¦ i � j § for theWDG edgesis truly not requiredfor
computingL

0
. However, thesevaluesare informative if onewantsto reasonabout

bindingmodificationslikely to improve latency (seediscussionon ¨ 4 and ¨ 5).
7In practice,it hasbeenconsistentlysub-quadraticin L.

265

Next, basedon thewindow dependency graph,we determined
our lo© wer boundL � on latency. If L � P L, andL is in fact equal
to the last stepof the ASAP schedulefor G D A E E F (see 4 3), then
the currentbinding is optimal8. Otherwiseit maybe desirableto
modifythe functionalunit assignmentto try to lower executionla-
tency. Recallthateachaggregatewindow i hasa schedulingrange. sD i F�E f D i F�/ , a local delayλ D i F , anda worst casepropagateddelay
δ D i F suchthat sD i F,s λ D i F,s δ D i F is a lower boundon the last step
activities in the window will be scheduled.We shall refer to the
differencebetweenthisboundand f D i F asthewindow’s excessde-
lay. Thekey insightin selectingwhichactivity bindingsto modify
is to 1) find windows with high positiveexcessdelaysthat 2) lie
on “critical paths”of theWDG. Recallthata window representsa
setof activities boundto a commonresourcethat have to be (se-
rially) executedover a given schedulingrange. A window with a
largepositive excessdelayis onefor whichserializationdueto re-
sourceconstraintsand/orpairwisepropagateddelaysfrom parent
windows, ∆, lead to delaysbeyond this schedulingrange. Thus,
in orderto reducelatency it may be worthwhile to reconsiderthe
bindingof activities in suchwindows. Note,however, thatnot all
suchwindows areproblematic.Indeed,only windows on the“crit-
ical paths”of theWDG, i.e., thoseleadingto an increasedoverall
latency, eitherdirectly or througha sequenceof pairwisepropa-
gateddelays,needto be considered.We identify “critical paths”
on the WDG by backtrackingfrom sink nodes(windows) in the
WDG whosefinal lower boundon executionexceedsthe global
lower boundL, andtraversethe graphup to parentwindows with
non-zeroexcessdelays.

Still, not all windows with positive excessdelay, andlying on
the WDG’s critical paths,would be candidatesfor iterative im-
provementon binding. Two simplerulescanbeusedto determine
windows for which a given binding is likely to be optimal. First,
a window with no additionaldelayspropagatedfrom its producer
windows and with an excessdelay r 1 neednot have the bind-
ing of its activities reconsidered.Indeed,asshown in theexample
in Fig.2, the benefitsof removing serializationin suchcaseswill
becanceledby theadditionaldelayincurredby requiredmove op-
erations. Similarly, a window with a non-zeropropagateddelay
from its producerwindows andanexcessdelay r 2 neednot have
the binding of its activities reconsidered.It follows that a WDG
thatonly containssuchwindows is unlikely to have its latency im-
proved by further modifying the binding. Thesesimpleheuristic
rulesprovedto beeffectivewhenappliedto thebenchmarksin 4 5.

This concludesour brief qualitative discussion.As mentioned
above, thepurposeof thissectionis not to proposeanalgorithmto
performthiscomplex trade-off exploration,but ratherto show that
the informationcontainedin the WDG canbe helpful to suchan
explorationprocess.

� nfT X ����TS(W9O&=�dª�� $ («�+T $ Y>+�����dª�T��@�=��< X T��
In thecontext of distributedregisterfiles, if onewantsto consider
thedeleteriouseffect of requireddataobjectmoveson thelatency
of aschedule,onemustexplicitly considerabindingof thedataflow
nodesto the functionalunits in the datapath.The basicproblem
formulatedandaddressedin thispaperis thusdifferentfrom those
consideredin [6, 11], for they assumenodatatransferdelays.How-
ever, onecanapplythesetechniquesto thedataflow afterabinding
functionhasbeendetermined.Indeed,by makingeachfunctional
unit adistinctresourcetypewith capacity1, andthebusaresource
typewith aspecificcapacity, thesemethodscanalsobemadebind-
ing specific. Given this, onecancomparethe absolutequality of
our lowerboundwith thatreportedin [6, 11]. With few exceptions

8Optimalat our level of abstraction,i.e., disregardingregisterfiles sizesandport
assignments.

[11] performsbetterthan[6], thusweshallcompareourwork with
animplementationof thealgorithmin [11].

Table1 summarizesour results.Severalbenchmarkdataflows
wereboundto the datapathshown in Fig.1. Initial andimproved
bindingswere obtainedmanuallybasedon the simple heuristics
discussedin 4 4. Columns2 and 4 of the table show the mini-
mumachievablelatency for centralizedandfor distributedregister
file structures,respectively. Differencesbetweentheseindicatethe
crudenessof assuminga centralizedregisterfile structurewhenit
is in factdistributed.Starredentriesareknown to beoptimallaten-
ciesoverall possiblebindings,thustheimprovementheuristicwas
effective.

Our lower boundon latency L � , shown in column5, wascon-
sistentlytight andfor seven of the ten benchmarksoutperformed
[11].

DFG Central. Binding Distrib . Lower Bds
RF RFs OurL

0
[11]

FFT Butterfly [3] 4 initial 8 8 6
imprvd. 5

0
5 4

4th order Avenhous 7 initial 10 10 9
Filter [5] imprvd. 9

0
9 9

4th order IIR 4 initial 9 9 8
Filter retimed[3] imprvd. 6

0
6 5

Beamforming Filter 4 initial 8 8 7
(3 beams)[9] imprvd. 6

0
6 5

AR Filter [2] 8 initial 15 13 14
imprvd 13 13 13

Table1: Experimentalresults.

In addition,notethat[6, 11] only generateboundson theearli-
estpossibleexecutiontimeof individualnodesin theDFG,so,the
informationon serialization(for FUs andbuses)that we capture
via theWDG is not available. Sincethe latency of a schedulecan
vary significantlyfor differentbindings,particularlyfor datapaths
with distributedregisterfiles,our approachhasa significantadded
value, in that it canprovide guidanceon how to modify binding
functionsto achieve lower latencies.

Codegenerationfor VLIW ASIPshasbeenaddressedexten-
sively in the literature,seee.g., [8, 7]. Although discussingthis
work is beyondthescopeof this paper, to furtherillustratetherel-
evanceof thetrade-off informationcapturedby theWDG, we will
briefly discusstheAVIV codegenerator[4]. Thiswork specifically
considersthesametrade-offs,whilederivingafunctionalunit bind-
ing/assignmentfor agivenexpressiontree.

As discussedbelow, AVIV greedilyprunesbindingalternatives
basedon a local costfunction.Givenanexpressiontree,anASAP
scheduleof the expressiontree is performed,and nodes(opera-
tions) on the resultinglevels are sequentiallyconsidered(in any
order)from the lowestto the highestlevel. As the operationsare
considered,asearchtreeis constructed,representingpossiblebind-
ing alternatives.Heuristicallyinferior alternativesareimmediately
pruned- basedon a local costfunction. Thecostassociatedwith
bindinganoperationto a functionalunit is thesumof 1) thenum-
ber of requireddatatransfersgiven thebindingsmadefor thean-
cestornodesof thatparticularpathof thedecisiontree,and2) the
numberof operationsat the currentlevel that areassignedto the
samefunctionalunit, againconsideringthebindingsfor theances-
tor nodes.While this greedypolicy would executefasterthanour
lower boundalgorithm,it makesdecisionsstrictly basedon local
information. Thus, for example,it doesnot discriminateamong
operationsthathave differentmobility (i.e., schedulingwindows),
which cancompromisethe overall quality of the binding. An it-
erative improvementalgorithmusingtheWDG caninsteadcreate
bindingalternativesbasedon a more“global” view of suchtrade-
offs, at theexpenseof an increasein runtime. This concludesour

266

discussionof therelevanceto codegenerationof thetradeoffs ex-
plicitly¬ modeledin ourapproach.

�� & $ X *���- & $
We have proposedanapproachto generatinglower boundson ex-
ecutionlatency for DFGson datapathstypical of VLIW ASIPsfor
a given functionalunit binding/assignment.While the boundwas
found to be competitive with state-of-the-artapproaches,its key
advantagelies in capturingdelaypenaltiesdueto operationserial-
izationand/ordatamovesamongdistributedregisterfiles. In order
to estimatesuchdelays,theschedulingproblemis relaxed(decom-
posed)into a numberof simplerschedulingsub-problems,jointly
representedusingthe window dependency graphmodel. Our re-
sults show that the relaxed, lesscomputationallyexpensive, ver-
sionof theschedulingproblemresultsin tight bounds.Moreover,
it canprovide valuableinformation/guidanceto heuristicbinding
algorithmsfor “clustered”VLIW ASIP datapaths.Functionalunit
assignment/bindingis a key stepof the difficult codegeneration
problemfor VLIW ASIPs. We are currently working on devel-
oping binding algorithms,supportedby the window dependency
graphmode,to addressthisproblem.

n�TY�'TS��T $ �T��
[1] G. deMicheli. SynthesisandOptimizationof Digital Ciruits.

McGraw-Hill, Inc, 1994.

[2] R. Jainet.al. Experiencewith theAdamsynthesissystem.In
Proc.of DAC, pages56–62,1989.

[3] V. Zivojnovic et. al. DSPstone:A DSPorientedbenchmark-
ing methodology. In Proc.of ICSPAT’94, Oct.1994.

[4] S. HannoandS. Devadas.Instructionselection,resourceal-
locationandschedulingin theAVIV retargetablecodegener-
ator. In Proc.of the35thDAC, pages510–15,June1998.

[5] E. IfeachorandB. Jervis.Digital signalprocessing:A prac-
tical approach. Addison-Wesley, 1993.

[6] M. Langevin andE.Cerny. A recursivetechniquefor comput-
ing lower-boundperformanceof schedules.ACM Trans.on
DesignAutomationof ElectronicSystems, 1(4):443–56,1996.

[7] C. Liem. Retargetablecompilers for embeddedcore proces-
sors. Kluwer AcademicPublishers,1997.

[8] P. MarwedelandGertGoossens,editors.CodeGenerationfor
EmbeddedProcessors. Kluwer AcademicPublishers,1995.

[9] R.Mucci.A comparisonof efficientbeamformingalgorithms.
IEEETrans.on SignalProcessing, 32(3):548–58,1984.

[10] M. Rim andR. Jain. Lower boundperformanceestimation
for thehigh-level synthesisschedulingproblem.IEEETrans.
on CADof ICs andSystems, 13(4):451–58,1994.

[11] G. Tiruvuri andM. Chung. Estimationof lower boundsin
schedulingalgorithmsfor high-level synthesis.ACM Trans.
on DAES(TODAES), 3(2):162–80,1998.

� { ��&+&��O&�� R T������ Q)[\!
Themainideaunderlyingthis lemmais thatany relaxationof con-
straints,e.g.,precedenceor resourceconstraints,ontheoriginal re-
sourceconstrainedschedulingproblemcanonly reducethestarting
time of anactivity in thecorrespondingoptimalschedule.Hence,
considerthesubgraphG D AqtE E q%F inducedby thesetof activitiesAq ,
i.e.,includingonlyarcsin theoriginalgraphthatarebetweenactiv-
ities in Aq . This subgraphcorrespondsto a relaxationof all prece-
denceconstraintsexternalto thesetof activities Aq . Next we per-
form anASAPschedulingfor theDFGG D Aq E E q F andlet l P 1 EdIdIdI m
denotethestepsin this schedule,andnl denotethenumberof ac-
tivitiesscheduledonstepl . Sincetheseactivitiesareto beexecuted
on a resourcer with capacityc D r F theabove ASAP schedulemay
notbefeasible.To obtaina lowerboundonnecessarydelaypenal-
tiesdueto theresourceconstraintsweconsideranew hypothetical
resourceconstrainedschedulingproblemwhich furtherrelaxesin-
ternalprecedenceconstraintsamongtheactivitiesin Aq . Weassume
thatonceanactivity on stepl of thesubgraph’s ASAP scheduleis
executedall nl M 1 activities on stepl s 1 canbe scheduledon the
subsequentstep.

This new hypotheticalproblemcanbe solved directly usinga
greedyalgorithmthatschedulesactivities assoonaspossible.Let
xl denotethe numberof activities that are eligible for execution
prior to stepl but,dueto capacityconstraints,will needto besched-
uledon stepl or later. Thuson stepl thetotal numberof activities
eligible for executionis nl s xl E however only c D r F canbe sched-
uled,thusxl M 1 (seeEq. 1) activities will bepostponedto thenext
step.Naturallysincetheschedulestartsonstep1, x0 P 0. Notethat
whichactivitiesareareactuallyscheduledonagivenstepis irrele-
vant,sincewecanalwaysassumethatat leastoneactuallybelongs
to stepl of theASAP schedule,andthusall activities on thenext
stepwill becomeeligible for execution.Theiterative computation
in (1) finisheson stepm wherexmM 1 correspondsto thenumberof
activities thathadto bepostponed,if any, beyondthelaststepmof
theASAPscheduledueto resourceconstraints.

xl M 1 P maxg nl s xl u c D r F�E 0i E l P 1 E�IdIdI mE (1)

boundD Aq E r FvP w xmM 1

c D r Fyx s m u 1 I (2)

From thereon we cancomputethe additionalnumberscheduling
stepsrequiredto executethepostponedactivities,if any, i.e., w xm® 1

c ¦ r § x
Finally, to obtainourboundwesubtract1 sincetheboundis onthe
numberof additionalstepsbeyond the first one,that arerequired
to executetheactivities.

¯ { ��&+&��O&�� R T������ Q)[_5
Thegoalof propagated-delayis to find a lower boundon thelast
stepon whichactivities in Window 2 will beexecuted.

We first considerlower boundson the time the last producer
activity in Window 1 is scheduled.If Aa

1 P P1 � 2 then,by definition
of the local delayandworst casepropagateddelayof Window 1,
thelastactivity mustbescheduledon or afterstep

last-producer-stepP f D 1FSs λ D 1FSs δ D 1F�I
If Aa

1 �P P1 � 2 then,usingtheresultin Lemma3.1, thelastproducer
mustbescheduledonor afterstep

last-producer-stepP start-steps boundD P1 � 2 E r D 1FdF
wherestart-stepP minak g sI D kF�e ak J P1 � 2 i correspondsto the ear-
liest possiblestepon which an activity in P1 � 2 may be scheduled.
Now, sinceat leastoneconsumeractivity in Window 2 depends

267

on the last produceractivity, the last consumerstepmuststrictly
exceed° thelast-producer-stepcomputedabove. In fact thereareat
least

num-consumers-for-last-producerP min
b
g=eCb e�e b J P1 � 2 i

consumersdependingonthelastproducer. Thuswesetthe“delay”
variableequalto

delay P�w num-consumers-for-last-producer� c D r D 2F�F x E
sothelastconsumerstepmustexceedthelast-producer-step s de-
lay.

Next we find a lower boundfor the last stepon which an ac-
tivity in thedependentWindow 2 will beexecuted.Let G D A2 E E q F
be the subgraphof G D A E E F which includesthe activities A2 and
all theedgesE q+G E amongtheseactivities. Supposewe perform
an ASAP schedulefor this subgraph,andlet L2 denotethe setof
activities on the first stepof that schedule. Also for any activ-
ity a J A2, let Pa denoteits produceractivities in Window 1, i.e.,
Pa P�g b J A1 e D b E aFfJ E i I

We considertwo cases.We first test if c D r D 1FdFjP 1 and � a J
L2 E�ePa e@P 2 I Sinceevery activity in L2 dependson two producer
activities in Window 1 andthecapacityof theresourceassociated
with theproducerwindow is 1, no activity in thedependentWin-
dow 2 canbegin executionprior to stepsD 1F=s 2 or, of course,its
own startingstepsD 2F . Thus the following lower boundfollows
immediatelyfrom Lemma3.1:

last-consumer-stepP maxg sD 1FSs 2 E sD 2F i s λ D 2F�I
Notethatdueto thepruningrulediscussedin 4 3.5,sD 1FSs 1 r sD 2F
thuswhen � a J L2 E�ePa e@± 1 thetheanalogousboundto theabove
woulddegenerateto sD 2F�s λ D 2F�E i.e.,would leavethecurrentprop-
agateddelayof thewindow unchanged.

If the conditionfor the previous caseis untruethenwe make
the optimistic assumptionthat activities in Window 2 can begin
executionon the first stepof the window sD 2F , even thoughthere
maybedependenciesonWindow 1. Thisgivesthefollowingbound

last-consumer-stepP sD 2FSs λ D 2FSs δ D 2F�I
Thuswe have two lower boundsfor thestepon which thelastac-
tivity in thedependentwindow is executed.

Finally, wetake themaximumof thesetwo bounds,i.e.,

last-consumer-stepPP maxg last-producer-steps delayE last-consumer-stepi I
Thepairwisepropagateddelayassociatedwith Window 2’s depen-
dency on Window 1 is thengivenby

∆ D 1 E 2F²P last-consumer-stepu . sD 2F�s λ D 2F�/'I
Theworstcasepropagateddelayassociatedwith Window 2, δ D 2F ,
is thenupdatedby takingtheworstof theold propagateddelay, and
thejust computedpairwisepropagateddelay

δ D 2FvP maxg δ D 2F�E ∆ D 1 E 2F i I
� { ��&+&=�y&��V³�>�T�&=�'T�� Q)[\!
We shallprove thetheoremby contradiction.Supposethereexists
a cycle in the prunedwindow dependency graphG DWE D F . With-
out loss of generalitysupposethe cycle visits nodes(windows)
1 E 2 E 3 EdI´I j and then back to 1 I Given our pruning rule, aggregate
Window 1 musthave a produceractivity, saya1 J P1 � 2, that can

executeon the last step f D 1F of the window’s schedulingrange.
Thus f D 1F would correspondto position(step)of a1 in theALAP
scheduleusedto definethat activity’s individual window. Since
Window 2 containsat leastoneactivity b2 that dependson a1, in
the sameALAP scheduleb2 mustbe scheduledon a stepbeyond
f D 1F�I Thusthefinal step f D 2F in theschedulingrangeof Window
2 must satisfy f D 2FU± f D 1F)s 1 I Using this sameargumentuntil
we reachWindow j we canshow that f D j Fµ± f D 1F=s j u 1 I Since
Window 1 alsodependson Window j , thepruningrule guarantees
that at leastoneproduceractivity a j J Pj � 1 in Window j canex-
ecuteon step f D j F�I Now, sincethereexistsanactivity in Window
1 that dependson a j , Window 1’s last step f D 1F mustbe at least
f D j FSs 1. Clearlythis is acontradictionsincethiswould imply that
f D 1Ff± f D j FSs 1 ± f D 1FSs j .

268

